検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 1 件中 1件目~1件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Multiple wavelengths texture measurement using angle dispersive neutron diffraction at WOMBAT

徐 平光; Liss, K.-D.*

Quantum Beam Science (Internet), 5(2), p.11_1 - 11_14, 2021/06

AA2020-0801.pdf:11.28MB

In contrast to conventional angle dispersive neutron diffractometers with a single-tube detector or a small-size linear position-sensitive detector, the WOMBAT diffractometer at Australian Nuclear Science and Technology Organisation (ANSTO) is equipped with a large-area curved position-sensitive detector, spanning 120$$^{circ}$$ for the scattering angle 2$$theta$$ and 15$$^{circ}$$ for the azimuth ${it $eta$}$, respectively. Here, WOMBAT was employed to establish a texture measurement environment for complex textured samples, through measuring neutron diffractograms at two selected wavelengths on a typical reference sample of martensite-austenite multilayered steel sheet. All neutron patterns were simultaneously Rietveld analyzed using the software, Materials Analysis Using Diffraction (MAUD). The shorter wavelength enabled to collect the martensite diffraction peaks 110, 200, 211, 220, 310, 222 as well as the austenite diffraction peaks 111, 200, 220, 311, 222, 331 diffraction peaks simultaneously by pre-setting the detector range to 2$$theta$$ = 30$$sim$$150$$^{circ}$$. The longer wavelength enabled to separate the overlapping strong martensite peak 110 and austenite peak 111 more reliably. Moreover, the detector panel division along the vertical direction covers a good stereographic coverage in the azimuthal angle. Such combination of multiple wavelength neutron diffraction combined with simultaneous Rietveld texture analysis was confirmed much valuable to realize high precision measurements for complex textured samples at an orientation distribution function (ODF) graticule of 5$$^{circ}$$, and in a much shorter beam time than the conventional angle dispersive method.

1 件中 1件目~1件目を表示
  • 1